GRE T2∗-Weighted MRI: Principles and Clinical Applications (2024)

1. Werring DJ, Frazer DW, Coward LJ, et al. Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain. 2004;127(part 10):2265–2275. [PubMed] [Google Scholar]

2. Mamisch TC, Hughes T, Mosher TJ, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiology. 2012;41(3):287–292. [PubMed] [Google Scholar]

3. van der Flier WM, Cordonnier C. Microbleeds in vascular dementia: clinical aspects. Experimental Gerontology. 2012;47(11):853–857. [PubMed] [Google Scholar]

4. Charidimou A, Jäger HR, Werring DJ. Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia. Experimental Gerontology. 2012;47(11):843–852. [PubMed] [Google Scholar]

5. Hernández MCV, Maconick LC, Tan EM, Wardlaw JM. Identification of mineral deposits in the brain on radiological images: a systematic review. European Radiology. 2012;22(11):2371–2381. [PubMed] [Google Scholar]

6. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Mark Haacke E. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–1449. [PMC free article] [PubMed] [Google Scholar]

7. Haacke E, Brown R, Thompson M, Venkatesan R. MRI Physical Principles and Sequence Design. New York, NY, USA: Wiley-Liss; 1999. [Google Scholar]

8. Liu JY, Ding J, Lin D, et al. T2*MRI of minimal hepatic encephalopathy and cognitive correlates in vivo. Journal of Magnetic Resonance Imaging. 2013;37(1):179–186. [PubMed] [Google Scholar]

9. Henninger B, Kremser C, Rauch S, et al. Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach. European Radiology. 2013;23(6):1643–1649. [PubMed] [Google Scholar]

10. Kolnagou A, Natsiopoulos K, Kleanthous M, Ioannou A, Kontoghiorghes GJ. Liver iron and serum ferritin levels are misleading for estimating cardiac, pancreatic, splenic and total body iron load in thalassemia patients: factors influencing the heterogenic distribution of excess storage iron in organs as identified by MRI T2*. Toxicology Mechanisms and Methods. 2013;23(1):48–56. [PubMed] [Google Scholar]

11. Barzin M, Kowsarian M, Akhlaghpoor S, Jalalian R, Taremi M. Correlation of cardiac MRI T2* with echocardiography in thalassemia major. European Review for Medical and Pharmacological Sciences. 2012;16(2):254–260. [PubMed] [Google Scholar]

12. Lin ZC, Zhai L, Chne YP, Zhang XL. Clinical application of T2*GRE multiple echo sequence on articular cartilage disease in the knee. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31(6):1095–1100. [PubMed] [Google Scholar]

13. Kolnagou A, Michaelides Y, Kontoghiorghe CN, Kontoghiorghes GJ. he importance of spleen, spleen iron, and splenectomy for determining total body iron load, ferrikinetics, and iron toxicity in thalassemia major patients. Toxicology Mechanisms and Methods. 2013;23(1):34–41. [PubMed] [Google Scholar]

14. Wu XD, Jing YF, Pei FY, et al. Value of magnetic resonance imaging T2* tests in detecting heart and liver iron overload in patients with beta-thalassemia major. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(2):249–252. [PubMed] [Google Scholar]

15. Origa R, Danjou F, Cossa S, et al. Impact of heart magnetic resonance imaging on chelation choices, compliance with treatment and risk of heart disease in patients with thalassaemia major. The British Journal of Haematology. 2013;163(3):400–403. [PubMed] [Google Scholar]

16. Queiroz-Andrade M, Blasbalg R, Ortega CD, et al. MR imaging findings of iron overload. Radiographics. 2009;29(6):1575–1589. [PubMed] [Google Scholar]

17. Qin Y, Zhu W, Zhan C, et al. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. Journal of Huazhong University of Science and Technology—Medical Science. 2011;31(4):578–585. [PubMed] [Google Scholar]

18. McNeill A, Birchall D, Hayflick SJ, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70(18):1614–1619. [PMC free article] [PubMed] [Google Scholar]

19. Mihai G, He X, Zhang X, et al. Design and rationale for the study of changes in iron and atherosclerosis risk in perimenopause. Journal of Clinical and Experimental Cardiology. 2011;2(article 152) [PMC free article] [PubMed] [Google Scholar]

20. Russo V, Rago A, Pannone B, et al. Early electrocardiographic evaluation of atrial fibrillation risk in beta-thalassemia major patients. International Journal of Hematology. 2011;93(4):446–451. [PubMed] [Google Scholar]

21. Yang YM, Feng X, Yin LK, Li CC, Jia J, Du ZG. Comparison of USPIO-enhanced MRI and Gd-DTPA enhancement during the subacute stage of focal cerebral ischemia in rats. Acta Radiologica. 2013 [PubMed] [Google Scholar]

22. Wadghiri YZ, Li J, Wang J, et al. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging. PLoS ONE. 2013;8(2)e57097 [PMC free article] [PubMed] [Google Scholar]

23. Hoshino Y, Odaka M, Hirata K. Pontine hemorrhage in a patient with type 1 renal tubular acidosis associated with osmotic demyelination syndrome. Brain and Nerve. 2008;60(9):1061–1065. [PubMed] [Google Scholar]

24. Poels MMF, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the rotterdam scan study. Stroke. 2010;41(10):S103–S106. [PubMed] [Google Scholar]

25. Akoudad S, Ikram MA, Koudstaal PJ, Hofman A, van der Lugt A, Vernooij MW. Cerebral microbleeds and the risk of mortality in the general population. European Journal of Epidemiology. 2013;28(10):815–821. [PubMed] [Google Scholar]

26. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. The Lancet Neurology. 2009;8(2):165–174. [PMC free article] [PubMed] [Google Scholar]

27. Bradley WG., Jr. MR appearance of hemorrhage in the brain. Radiology. 1993;189(1):15–26. [PubMed] [Google Scholar]

28. Atlas SW, Mark AS, Grossman RI, Gomori JM. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology. 1988;168(3):803–807. [PubMed] [Google Scholar]

29. Weingarten K, Zimmerman RD, Cahill PT, Deck MDF. Detection of acute intracerebral hemorrhage on MR imaging: ineffectiveness of prolonged interecho interval pulse sequences. The American Journal of Neuroradiology. 1991;12(3):475–479. [PMC free article] [PubMed] [Google Scholar]

30. Hayman LA, Pagani JJ, Kirkpatrick JB, Hinck VC. Pathophysiology of acute intracerebral and subarachnoid hemorrhage: applications to MR imaging. The American Journal of Roentgenology. 1989;153(1):135–139. [PubMed] [Google Scholar]

31. Kuijf HJ, Brundel M, de Bresser J, et al. Semi-automated detection of cerebral microbleeds on 3.0 T MR images. PLoS ONE. 2013;8(6)e66610 [PMC free article] [PubMed] [Google Scholar]

32. Morioka T, Nishio S, Mihara F, et al. Usefulness of T2* weighted magnetic resonance image in the diagnosis of head injury on chronic stage. Brain and Nerve. 1999;51(8):703–708. [PubMed] [Google Scholar]

33. Patel MR, Edelman RR, Warach S. Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke. 1996;27(12):2321–2324. [PubMed] [Google Scholar]

34. Kaya D, Dinçer A, Yildiz ME, Çizmeli MO, Erzen C. Acute ischemic infarction defined by a region of multiple hypointense vessels on gradient-echo T2* MR imaging at 3 T. The American Journal of Neuroradiology. 2009;30(6):1227–1232. [PMC free article] [PubMed] [Google Scholar]

35. Edelman RR, Johnson K, Buxton R. MR of hemorrhage: a new approach. The American Journal of Neuroradiology. 1986;7(5):751–756. [PMC free article] [PubMed] [Google Scholar]

36. Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002;33(1):95–98. [PubMed] [Google Scholar]

37. Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke. 1999;30(4):765–768. [PubMed] [Google Scholar]

38. Fiebach JB, Schellinger PD, Gass A, et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke. 2004;35(2):502–506. [PubMed] [Google Scholar]

39. Zia MI, Ghugre NR, Connelly KA, et al. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardialinfarction. Circulation: Cardiovascular Imaging. 2012;5(5):566–572. [PubMed] [Google Scholar]

40. Ellingson AM, Mehta H, Polly DW, Ellermann J, Nuckley DJ. Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics. Spine. 2013;38(24):E1533–E1540. [PMC free article] [PubMed] [Google Scholar]

41. Takashima H, Takebayashi T, Yoshimoto M, et al. Correlation between T2 relaxation time and intervertebral disk degeneration. Skeletal Radiology. 2012;41(2):163–167. [PubMed] [Google Scholar]

42. Walker MH, Anderson DG. Molecular basis of intervertebral disc degeneration. Spine Journal. 2004;4(6, supplement):158S–166S. [PubMed] [Google Scholar]

43. Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C. The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. The American Journal of Neuroradiology. 2006;27(2):337–342. [PMC free article] [PubMed] [Google Scholar]

44. Hoppe S, Quirbach S, Mamisch TC, Krause FG, Werlen S, Benneker LM. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. European Radiology. 2012;22(9):2013–2019. [PubMed] [Google Scholar]

45. Tsai PH, Lee HS, Siow TY, et al. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis. PLoS ONE. 2013;8(10)e76658 [PMC free article] [PubMed] [Google Scholar]

46. Welsch GH, Trattnig S, Paternostro-Sluga T, et al. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI. Skeletal Radiology. 2011;40(5):543–551. [PubMed] [Google Scholar]

47. Qian Y, Williams AA, Chu CR, Boada FE. Multicomponent T2* mapping of knee cartilage: technical feasibility ex vivo. Magnetic Resonance in Medicine. 2010;64(5):1426–1431. [PMC free article] [PubMed] [Google Scholar]

48. Mlynárik V, Trattnig S, Huber M, Zembsch A, Imhof H. The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. Journal of Magnetic Resonance Imaging. 1999;10(4):497–502. [PubMed] [Google Scholar]

49. Krause FG, Klammer G, Benneker LM, Werlen S, Mamisch TC, Weber M. Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus. Journal of Orthopaedic Research. 2010;28(12):1562–1568. [PubMed] [Google Scholar]

50. Bittersohl B, Miese FR, Dekkers C, et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of glenofhumeral cartilage in asymptomatic volunteers at 3 T. European Radiology. 2013;23(5):1367–1374. [PubMed] [Google Scholar]

51. Luo Q, Leng H, Wang X, Zhou Y, Rong Q. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone. Journal of Orthopaedic Research. 2014;32(2):217–223. [PubMed] [Google Scholar]

52. Mori S. SSBT (severely suppressed bone turnover) Clinical Calcium. 2013;23(3):365–370. [PubMed] [Google Scholar]

53. Mori S. Morphological analysis of bone dynamics and metabolic bone disease. Pathophisiology of microdamage. Clinical Calcium. 2011;21(4):559–565. [PubMed] [Google Scholar]

54. Mori S. Bone fracture and the healing mechanisms. Microdamage and microfracture. Clinical Calcium. 2009;19(5):699–703. [PubMed] [Google Scholar]

55. Yoshioka H, Tanaka T, Ueno T, et al. High-resolution MR imaging of the proximal zone of the lunotriquetral ligament with a microscopy coil. Skeletal Radiology. 2006;35(5):288–294. [PubMed] [Google Scholar]

56. Sasaki T, Saito Y, Yodono H, et al. MR diagnosis of internal derangement of the knee by SE T1 and GRE T2* weighted images: evaluation of 300 arthroscopically proven knees. Nippon Acta Radiologica. 1998;58(11):572–577. [PubMed] [Google Scholar]

57. Koff MF, Shah P, Pownder S, et al. Correlation of meniscal T2* with multiphoton microscopy, and change of articular cartilage T2 in an ovine model of meniscal repair. Osteoarthritis Cartilage. 2013;21(8):1083–1091. [PMC free article] [PubMed] [Google Scholar]

58. Stelzeneder D, Shetty AA, Kim SJ, et al. Repair tissue quality after arthroscopic autologous collagen-induced chondrogenesis (ACIC) assessed via T2* mapping. Skeletal Radiology. 2013;42(12):1657–1664. [PubMed] [Google Scholar]

59. Østergaard L. Principles of cerebral perfusion imaging by bolus tracking. Journal of Magnetic Resonance Imaging. 2005;22(6):710–717. [PubMed] [Google Scholar]

60. Kuhl CK, Bieling H, Gieseke J, et al. Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology. 1997;202(1):87–95. [PubMed] [Google Scholar]

61. Unger E, Needleman O, Cullis P, Tilco*ck C. Gadolinium-DTPA liposomes as a potential MRI contrast agent. Work in progress. Investigative Radiology. 1988;23(12):928–932. [PubMed] [Google Scholar]

62. Johnson G, Wetzel SG, Cha S, Babb J, Tofts PS. Measuring blood volume and vascular transfer constant from dynamic, T2*-weighted contrast-enhanced MRI. Magnetic Resonance in Medicine. 2004;51(5):961–968. [PubMed] [Google Scholar]

63. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbonmon-oxyhemoglobin. Proceedings of the National Academy of Sciences of the United States of America. 1936;22(4):210–216. [PMC free article] [PubMed] [Google Scholar]

64. Zacà D, Jovicich J, Nadar SR, Voyvodic JT, Pillai JJ. Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI. Journal of Magnetic Resonance Imaging. 2013 [PMC free article] [PubMed] [Google Scholar]

65. Kim T, Murakami T, Hori M, Onishi H, Tomoda K, Nakamura H. Effect of superparamagnetic iron oxide on tumor-to-liver contrast at T2*-weighted gradient-echo MRI: comparison between 3.0 T and 1.5 T MR systems. Journal of Magnetic Resonance Imaging. 2009;29(3):595–600. [PubMed] [Google Scholar]

66. Tong AN, Lv XY, Yan P, Wang YM. Magnetic resonance T2*-weighted study of U87 MG glioma tumors and its relationship between tumor hypoxia and VEGF expression. CNS Neuroscience and Therapeutics. 2013;19(3):201–203. [PMC free article] [PubMed] [Google Scholar]

GRE T2∗-Weighted MRI: Principles and Clinical Applications (2024)
Top Articles
Latest Posts
Article information

Author: Stevie Stamm

Last Updated:

Views: 6676

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Stevie Stamm

Birthday: 1996-06-22

Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

Phone: +342332224300

Job: Future Advertising Analyst

Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.